Practice Mode – Questions and choices are randomly arranged, the answer is revealed instantly after each question, and there is no time limit for the exam.[mtouchquiz 520 title=off]
Exam Mode – Questions and choices are randomly arranged, time limit of 1min per question, answers and grade will be revealed after finishing the exam.[mtouchquiz 521 title=off]
Text Mode – Text version of the exam 1. Doctor’s order: Amoxicillin 0.25 g p.o. every 8 hours; Available: Amoxicillin 125 mg tablets. How many tablets will the nurse give per dose? 2. Doctor’s order: Zofran 8 mg p.o. t.i.d.; Available: Zofran in a 100 ml bottle labeled 4 mg/tsp.; How many ml will the nurse administer for each dose? 3. Doctor’s order: Morphine gr 1/10; Available: Morphine 10 mg/ml. How many ml will the nurse give? 4. Give Fortaz mg/kg/day p.o. 50 mg/kg p.o. t.i.d. to a child who weighs 25.5 kg. Fortaz is available in an oral suspension labeled 100 mg/ml. How many ml would the nurse administer per dose? 5. Give Ceclor 45 mg/kg/day p.o. in 3 divided doses for a patient who weighs 66 pounds. A 75 ml stock medication is labeled Ceclor 125 mg/ml. How many ml would the nurse administer per dose? 6. Give Biaxin for a child whose BSA is 0.55 m2. The usual adult dose is 500 mg. Biaxin is available in an oral suspension. The 100ml bottle is labeled 50 mg/ml. How many ml would the nurse give per dose? 7. Give Phenergan for a child whose BSA is 1.2 m2. The usual adult dose is 25 mg. How many milligrams would the nurse administer for the dose? 8. LR 125 ml/hr via gravity flow using tubing calibrated at 15 gtt/ml. Calculate the flow rate. 9. One liter NS to infuse over 24 hours using a micro drip (gravity flow). Calculate the flow rate. 10. At the change of shift you notice 200 ml left to count in the I.V. bag. The I.V. is infusing at 80 ml/hr. How much longer will the I.V. run? 11. Keflin 2 g in 100 ml D5W IVPB over 20 minutes. The I.V. tubing is 15 gtt/ml. Calculate the flow rate. 12. The physician writes an order for Heparin 900 units/hour. The label on the I.V. bag reads: Heparin 10,000 units in 500 ml D5W. How many ml/hr will deliver the correct dose? 13. Administer Heparin 1,000 units/hr from an I.V. bag mixed 40,000 units in 1 L D5W. How many ml/hr will deliver the correct amount of Heparin? 14. The patient’s Heparin is infusing at 28 ml/hr on an infusion pump. The bag of fluid is mixed 20,000 units of Heparin in 500 ml D5W. What hourly dose of heparin is the patient receiving? 15. The patient’s heparin drip is infusing at 11 ml/hr on an infusion pump. The bag of fluid is mixed 25,000 units of Heparin in 250 ml D5W. What hourly dose of Heparin is the patient receiving? 16. Give Regular insulin by continuous I.V. infusion at 20 units/hr. The solution is 250 ml NS with 100 units of Regular insulin. What rate on the infusion pump will deliver the correct dose? 17. Administer a Theophylline drip at 40 mg/hr The solution is 250 ml D5W + Theophylline 500 mg. What rate on the infusion pump will deliver the correct dose? 18. Give Tridil 15 mcg/min. Tridil is mixed 50 mg in 500 ml D5W. What rate on the infusion pump will deliver the correct dose? 19. Give propofol 10 mcg/kg/minute. The infusion is mixed propofol 250 mg in 250 ml D5W. The patient weighs 168 pounds. What rate on the infusion pump will deliver the correct dose? 20. Give Nitroprusside 5 mcg/kg/minute via continuous infusion for a patient weighing 205 lbs. Nitroprusside is available in a solution of 200 mg in 250 ml D5W. What rate on the infusion pump will deliver the correct dose? 21. Tridil is infusing at 15 ml/hr on an infusion pump. The drug is mixed 50 mg in 500 ml D5W. How many mcg/minute is the patient receiving? 22. A lidocaine drip is infusing at 30 ml/hr on an infusion device. The drug is mixed 2 g in 500 ml D5W. How many mg/minute is the patient receiving? 23. Aminophylline is infusing at 30 ml/hr. The drug is mixed 250 mg in 500 ml D5W. How many mg/hr is the patient receiving? 24. The cardiac patient is to receive Cardizem 5 mg IVP. The vial contains 10 mg/2 ml. How many ml will you give? 25. The patient is to take Aspirin gr. X. The bottle contains Aspirin 300 mg tablets. How many tablets should he take? 26. Digoxin 125 mcg is ordered IVP every a.m. The vial contains 0.5 mg in 2 ml. How many ml will you give? 27. The pre-op patient is ordered Atropine gr. 1/150 IM. The vial contains Atropine 0.4 mg in 1 ml. How much will you give? 28. The patient is to receive Heparin 1500 units/hr by IV infusion. The IV contains 25,000 units of Heparin in 250 ml of D5W. At what rate should you set the IV pump (ml/hr)? 29. The IV with Nitroglycerin is infusing at 6 ml/hr. The concentration of the IV is 50 mg in 250 ml of D5W. How many mg/hr is the patient receiving? Situation: The patient is ordered an IV of 1000 ml of Normal Saline over 8 hours. 30. At what rate would you set the IV pump (ml/hr)? 31. How many drops per minute would you set the gravity IV tubing with a drip factor of 15 drops/ml? 32. If the current IV bag was started at 1:00, what time would you hang the next bag? 33. The patient with an infection is to receive an IVPB of Ampicillin 500 mg in 50 ml over 30 minutes. At what rate would you set the pump? 34. An IVPB of Vancomycin 1 gram in 250 ml is to infuse over 90 minutes. At what rate should the pump be set? 35. The patient is ordered Fortaz 250 mg IM. The vial contains 500 mg powder with directions to add 1.5 ml of sterile water for a total volume of 1.8 ml. How many ml will you administer? 36. The physician ordered an IV of Dobutamine at 5 mcg/Kg/min. The patient weighs 198 lbs. The IV solution is 500 mg Dobutamine in 250 ml D5W. How many ml/hr should the pump be set? 1. Answer: D. 2 tabs Formula: 2. Answer: D. 10 ml Formula: 3. Answer: A. 0.6 ml Formula: 4. Answer: D. 12.8 ml Formula: 5. Answer: C. 3.6 ml Formula: 6. Answer: A. 3.2 ml Formula: 7. Answer: B. 17.6 mg BSA Formula: 8. Answer: D. 31 gtt/min IV Flow Formula: 9. Answer: A. 42 gtt/min IV Flow Formula: 10. Answer: D. 2 hrs and 30 mins Solution: 200 ÷ 80 = 2.5 = 2 hrs and 30 mins 11. Answer: C. 75 gtt/min IV Flow Formula: 12. Answer: B. 45 ml/hr Formula: 13. Answer: C. 25 ml/hr Formula: 14. Answer: A. 1,120 units/hr Solution: 15. Answer: D. 1,100 units/hr Solution: 16. Answer: C. 50 ml/hr Formula: 17. Answer: A. 20 ml/hr Formula: 18. Answer: D. 9 ml/hr 1. Infusion device is set at hourly rate, so convert mcg/min to mcg/hr 2. Drug is expressed in mg, so covert mcg to mg 3. Formula: 19. Answer: C. 46 ml/hr 1. Convert lbs to kg 2. Calculate the minute rate 3. Calculate hourly rate 4. Drug is expressed in mg, so convert mcg to mg 5. Formula: 20. Answer: B. 35 ml/hr 1. Convert lbs to kg 2. Calculate the minute rate 3. Calculate hourly rate 4. Drug is expressed in mg, so convert mcg to mg 5. Formula: 21. Answer: A. 25 mcg/min 1. Convert 50 mg to mcg = 50,000 mcg 2. Use ratio/proportion to solve 3. Calculate the minute rate 22. Answer: D. 2 mg/min 1. Convert 2 g to mg = 2,000 mg 2. Use ratio/proportion to solve 3. Calculate the minute rate 23. Answer: D. 15 mg/hr 24. Answer: D. 1 ml 10 mg : 2 ml = 5 mg : x ml 25. Answer: D. 2 tablets 1 grain = 60 mg 26. Answer: B. 0.5 ml 1 mg = 1000 mcg 27. Answer: A. 1 ml 1gr = 60 mg 28. Answer: A. 15 ml/hr 25,000 units : 250 ml = 1,500 units : x ml 29. Answer: A. 1.2 mg/hr 50 mg : 250 ml = x mg : 6 ml 30. Answer: A. 125 ml/hr 1,000 ml ÷ 8 hrs 31. Answer: C. 31 gtts/min 125 ml ÷ 60 min x 15 gtts/ml 32. Answer: C. 9:00 33. Answer: C. 100 ml/hr 50 ml : 30 min = x ml : 60 min 34. Answer: C. 167 ml/hr 250 ml : 90 min = x ml : 60 min 35. Answer: D. 0.9 ml 500 mg : 1.8 ml = 250 mg : x ml 36. Answer: D. 14 ml/hr 198 lbs ÷ 2.2 lbs/Kg = 90 KgPractice Mode
Exam Mode
Text Mode
Answers and Rationales
Solution:
Solution:
Solution:
Solution:
Solution: 45 mg/kg/day x 30 kg = 1.350 mg/day ÷ 3 doses = 450 mg per dose
BSA Formula:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
15 mcg/min = 900 mcg/hr (15 x 60)
900 mcg/hr = 0.9 mg/hr
Solution:
168 ÷ 2.2 = 76.36 = 76.4 kg
76.4 kg x 10 mcg/kg/min = 764 mcg/min
764 mcg/min x 60 mins/hr = 45,840 mcg/hr
45,840 mcg = 45.84 mg
Solution:
205 ÷ 2.2 = 93.18 = 93.2 kg
93.2 kg x 5 mcg/kg/min = 466 mcg/min
466 mcg/min x 60 mins/hr = 27,960 mcg/hr
27,960 mcg = 27.96 mg
Solution:
x = 1,500 mcg/hr
1,500 mcg/hr ÷ 60 mins/hr = 25 mcg/min
x = 120 mg/hr
120 mg/hr ÷ 60 mins/hr = 2 mg/min
x = 15 mg/hr
10 x = 10
x = 1
10 grains = 600 mg
300 mg : 1 tab = 600 mg: x tabs
0.5 mg : 2 ml = .125 mg : x ml
1/150 gr – .4 mg
0.4 mg : 1 ml = 0.4 mg : x ml
*Remember a pump setting is always ml/hour
90 Kg x 5 mcg/min = 4500 mg/min
4500 mcg ÷ 1000 mcg/mg = 0.45 mg/min
500 mg : 250 ml = 0.45 mg : x ml
x = .0225 ml/min
.0225 ml/min x 60 min in hr = 13.5 = 14 ml/hr